
Deployment Manual for MotionInput 3.4 EyeGaze 1

Deployment Manual for
MotionInput 3.4 - EyeGaze
Welcome to the deployment manual for the EyeGaze Tracker, part
of the MotionInput 3.4 project. This guide will walk you through
the steps to deploy the EyeGaze Tracker project successfully
after obtaining the source code. This hands-free mouse control
solution uses eye movements captured via a standard webcam,
employing computer vision techniques and the MediaPipe library
to translate these movements into cursor navigation on your
screen.
Table of contents

Welcome to the deployment manual for the EyeGaze Tracker, part of the MotionInput 3.4
project. This guide will walk you through the steps to deploy the EyeGaze Tracker project
successfully after obtaining the source code. This hands-free mouse control solution uses
eye movements captured via a standard webcam, employing computer vision techniques and
the MediaPipe library to translate these movements into cursor navigation on your screen.
Prerequisites

Features
Requirements
Installation
Usage

Deployment Manual for MotionInput 3.4 EyeGaze 2

Prerequisites
Ensure you have Python version 3.10 or newer installed on your machine. The
EyeGaze Tracker relies on several external libraries, including OpenCV,
MediaPipe, and PyQt5. These dependencies can be installed through the package
manager pip

Features
Real-time eye tracking using the computer's camera

Calibration process to map eye movements to screen coordinates

Projective transformation for accurate cursor control

Distance checking to ensure optimal user positioning

Click control through winking or dwelling on a specific point

Transparent overlay for visual feedback and user guidance

Requirements
Python 3.10

OpenCV opencv-python)

MediaPipe (mediapipe)

PyQt5 PyQt5)

Installation

Configuration
How it works
Classes and Methods

Configuration

Build from scratch

Deployment Manual for MotionInput 3.4 EyeGaze 3

� Clone the repository:

git clone https://github.com/MotionInput/MI3.4_EyeGaze.git
cd MI3.4_EyeGaze

� Create a virtual environment (optional but recommended):

python -m venv venv
source venv/bin/activate # For Windows: venv\Scripts\activate

� Install the required dependencies:

pip install -r requirements.txt

Usage
� Run the main script:e for the launch

python main.py

� Click "OK" in the start dialog to begin the Eye Gaze Tracker.

� Follow the on-screen instructions for the distance check and calibration
process.

� Once calibration is complete, the Eye Gaze Tracker will start controlling the
mouse cursor based on your eye movements.

� Press the 'ESC' key to exit the program.

Configuration
The project's configuration settings can be adjusted in the config.json file. Some
notable settings include:

debug Specifies whether to show debug information, default is false.

https://github.com/MotionInput/MI3.4_EyeGaze.git
http://main.py/

Deployment Manual for MotionInput 3.4 EyeGaze 4

cursor_denoise_level Specifies the waiting time to take the average of mouse
movements for smoother cursor control.

distance_varifier_time Specifies the time to allow users to see the distance
checker.

calibration_point_duration Specifies the duration to show each calibration point.

calibration_point_color Specifies the color of the calibration point.

cursor_highlight_color Specifies the color of the cursor highlight.

cursor_highlight_radius Specifies the radius of the cursor highlight.

How it works
� Eye tracking: The EyeTracker class uses the MediaPipe library to detect and

track the user's eye landmarks from the camera feed. It calculates the average
coordinates of the left and right eyes.

� Calibration: The Calibration class handles the calibration process. It defines
calibration points on the screen and guides the user to look at each point for a
certain duration. It collects eye landmark data for each calibration point and
calculates the average points to create calibration planes.

� Projective transformation:
The ProjectiveTransformer and FourSurfaceProjectiveTransformer classes are used to
transform the eye coordinates from the camera space to the screen space.
They use projective transformation to map the calibration planes to the
corresponding screen regions.

� Distance checking: The DistanceChecker class verifies the user's distance from
the camera by analyzing the triangle formed by the left eye, right eye, and
nose tip landmarks. It provides visual feedback to ensure the user is at an
appropriate distance.

� Click control (deprecated): The ClickController class handles click events
based on user actions, such as winking or dwelling on a specific point for a
certain duration.

Deployment Manual for MotionInput 3.4 EyeGaze 5

� Transparent overlay: The TransparentWindow class creates a transparent window
overlay that displays visual elements like calibration points and the cursor
highlight. It communicates with the main process using multiprocessing
queues.

� Window control: The WindowControl class provides utility functions to focus on
specific windows, such as the Chrome browser or the control panel.

� Main process: The main function orchestrates the overall flow of the program.
It initializes the necessary components, runs the calibration process, and
continuously tracks the user's eye movements to control the mouse cursor. It
communicates with the control panel process using multiprocessing queues
and events.

Classes and Methods
Configuration

__init__(self) Initializes the configuration object by loading settings
from config.json .

__getattr__(self, name) Allows accessing configuration settings as attributes.
DistanceChecker

check_distance(self, frame, face_mesh, frame_w, frame_h) Checks the user's distance
from the camera by analyzing facial landmarks.

EyeTracker

__init__(self, click_controller) Initializes the eye tracker with a click controller.

get_a_camera_image(self) Captures an image from the camera.

get_average_eye_coordinates(self, landmarks) Calculates the average coordinates
of the left and right eyes.

get_eye_coordinates(self, frame) Detects and returns the eye coordinates from
the camera frame.

track_eyes(self, transformer, frame) Tracks the user's eye movements and
updates the cursor position.

Calibration

Deployment Manual for MotionInput 3.4 EyeGaze 6

__init__(self) Initializes the calibration object with predefined calibration
points.

calibrate(self, frame, landmark, screen_w, screen_h, queue) Performs the calibration
process by collecting eye landmark data for each calibration point.

add_calibration_point(self, landmark) Adds a calibration point to the collected
data.

complete_calibration(self, screen_w, screen_h) Calculates the projective
transformation based on the collected calibration data.

ProjectiveTransformer

__init__(self, l: Quadrilateral, r: Quadrilateral) Initializes the projective
transformer with source and destination quadrilaterals.

to_left(self, r_points) Transforms points from the right quadrilateral to the left
quadrilateral.

to_right(self, l_points) Transforms points from the left quadrilateral to the
right quadrilateral.

FourSurfaceProjectiveTransformer

__init__(self, l: [Quadrilateral], r: Quadrilateral) Initializes the four-surface
projective transformer with source and destination quadrilaterals.

to_right(self, l_point) Transforms points from the left quadrilaterals to the
right quadrilateral.

transform_ratio(self) Calculates the accuracy measure of the transformation.

screen_size_to_eye_pixel_ratio(self) Calculates the ratio between the screen size
and the eye pixel size.

WindowControl

focus_chrome() Focuses on the Chrome browser window.

focus_control_panel() Focuses on the control panel window.

minimize_code_runner() Minimizes the code runner window.
TransparentWindow

__init__(self, window_name) Initializes the transparent window with the specified
name.

Deployment Manual for MotionInput 3.4 EyeGaze 7

initUI(self) Initializes the user interface of the transparent window.

display_marker(self) Displays the calibration marker on the window.

hide_marker(self) Hides the calibration marker.

paintEvent(self, event) Handles the painting of the window, including the
calibration marker and cursor highlight.

animateMarker(self, x, y, size=100) Animates the calibration marker to the
specified position and size.

ApplicationOverlay

__init__(self, paused_state, q) Initializes the application overlay with a paused
state and a queue for communication.

on_press(self, key) Handles key press events.

on_move(self, x, y) Handles mouse movement events.

run(self) Runs the application overlay.

Build from scratch
python -m nuitka main.py \
--standalone \
--output-dir=./dist \
--include-data-files=./config.json=./config.json \
--enable-plugin=pyside6 \
--user-plugin=plugins/mediapipe.py \
--windows-disable-console

http://main.py/

